
Computers & Security 151 (2025) 104322

A
0

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Full length article

Enhancing can security with ML-based IDS: Strategies and efficacies against
adversarial attacks
Ying-Dar Lin a,∗, Wei-Hsiang Chan a , Yuan-Cheng Lai b , Chia-Mu Yu c , Yu-Sung Wu a ,
Wei-Bin Lee d

a Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
b Department of Information Management, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
c Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
d Hon Hai Research Institute, Taipei, Taiwan

A R T I C L E I N F O

Keywords:
Adversarial attack
Machine learning
Intrusion detection
Distance-based optimization
Electronic vehicle

A B S T R A C T

Control Area Networks (CAN) face serious security threats recently due to their inherent vulnerabilities
and the increasing sophistication of cyberattacks targeting automotive and industrial systems. This paper
focuses on enhancing the security of CAN, which currently lack adequate defense mechanisms. We propose
integrating Machine Learning-based Intrusion Detection Systems (ML-based IDS) into the network to address
this vulnerability. However, ML systems are susceptible to adversarial attacks, leading to misclassification of
data. We introduce three defense combination methods to mitigate this risk: adversarial training, ensemble
learning, and distance-based optimization. Additionally, we employ a simulated annealing algorithm in
distance-based optimization to optimize the distance moved in feature space, aiming to minimize intra-class
distance and maximize the inter-class distance. Our results show that the ZOO attack is the most potent
adversarial attack, significantly impacting model performance. In terms of model, the basic models achieve
an F1 score of 0.99, with CNN being the most robust against adversarial attacks. Under known adversarial
attacks, the average F1 score decreases to 0.56. Adversarial training with triplet loss does not perform well,
achieving only 0.64, while our defense method attains the highest F1 score of 0.97. For unknown adversarial
attacks, the F1 score drops to 0.24, with adversarial training with triplet loss scoring 0.47. Our defense method
still achieves the highest score of 0.61. These results demonstrate our method’s excellent performance against
known and unknown adversarial attacks.
1. Introduction

Electric vehicles (EVs) are growing in popularity and rely on mul-
tiple electronic control units (ECUs) for critical functions like braking
and steering. These ECUs communicate with each other via the Con-
trol Area Network (CAN) (Natale et al., 2012), which lacks strong
security features like encryption or authentication (Miller and Valasek,
2013). This weakness enables hackers to access the CAN and send
unauthorized commands, potentially manipulating vehicle behavior
and compromising safety and operation.

Given the vulnerabilities in the CAN, implementing an Intrusion De-
tection System (IDS) is essential for security. Although anomaly-based
and signature-based IDS have limitations in recognizing anomalies and
known threats, a machine learning (ML)-based IDS is more effective.
It efficiently detects malicious CAN messages and helps identify new
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types of attacks. However, it is crucial to note that ML-based IDS can
still be susceptible to adversarial attacks.

Adversarial attacks (Wang, 2018; Martins et al., 2020), particularly
evasion attacks that alter test data to deceive ML models, pose a major
threat to ML systems, including our ML-based CAN IDS. These attacks
can trick the IDS, leading to compromised ECUs and vulnerabilities in
the CAN network. To counter this threat, implementing strong defenses
is crucial to protect against such attacks and preserve the integrity of
the CAN network.

To counter adversarial attacks, Adversarial Training (AT) (Miyato
et al., 2015) and Ensemble Learning (EL) are commonly used. AT
retrains models with adversarial data to improve resistance to known
attacks, while EL (Strauss et al., 2017) uses multiple models to enhance
decision-making through diverse data interpretations. However, these
vailable online 23 January 2025
167-4048/© 2025 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cose.2025.104322
Received 12 August 2024; Received in revised form 14 December 2024; Accepted 6
 January 2025

https://www.elsevier.com/locate/cose
https://www.elsevier.com/locate/cose
https://orcid.org/0009-0001-9975-2506
https://orcid.org/0000-0003-3695-5784
https://orcid.org/0000-0002-1677-2131
https://orcid.org/0000-0002-9219-4804
https://orcid.org/0000-0002-8757-1214
mailto:ydlin@cs.nctu.edu.tw
mailto:ivan89031580.cs11@nycu.edu.tw
mailto:laiyc@cs.ntust.edu.tw
mailto:chiamuyu@nycu.edu.tw
mailto:ysw@nycu.edu.tw
mailto:wei-bin.lee@foxconn.com
https://doi.org/10.1016/j.cose.2025.104322
https://doi.org/10.1016/j.cose.2025.104322
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2025.104322&domain=pdf


Computers & Security 151 (2025) 104322Y. Lin et al.

t

a

m

e

M
i
a

r
l
v

a

t
a
k

e

t
i
t

e

d
m
t
e

a

m

e

M

u

c
a

f
D

methods might not fully protect against new, unknown attacks, making
he development of further defenses essential to effectively address

emerging threats.
Another defensive approach is Distance-based Optimization (DO),

iming to keep feature vectors sufficiently distant from each class
to ensure accurate classification despite noise. Determining the opti-

al distance and direction is challenging, often relying on heuristics,
which may not yield the best solution. To overcome this, Simulated
Annealing (SA) (Bertsimas and Tsitsiklis, 1993), a heuristic and global
optimization algorithm, is employed to identify optimal parameters. By
integrating adversarial training, ensemble learning, and distance-based
optimization, the CAN IDS system can effectively counter both known
and unknown adversarial threats, maintaining robust network security.

Adversarial defense research typically centers on network IDS (Anthi
t al., 2021; Demontis et al., 2019; Lin et al., 2022) and image recogni-

tion (Chien and Chen, 2024; Mao et al., 2019; Li et al., 2019; Deng and
u, 2024; Mustafa et al., 2020; Seo et al., 2023). Our focus, however,

s on EV emulation, which faces significant challenges from adversarial
ttacks. Common defenses like adversarial training (Miyato et al.,

2015) and ensemble learning (Strauss et al., 2017) might not thwart
unknown adversarial attacks. Recently, distance-based methods (Wen
et al., 2016) have been explored, though they are still emerging and
under-researched. Electric vehicles (EVs) are growing in popularity and
ely on multiple electronic control units (ECUs) for critical functions
ike braking and steering. These ECUs communicate with each other
ia the Control Area Network (CAN) (Ashraf and Ahmed, 2020), which

lacks strong security features like encryption or authentication (Miller
nd Valasek, 2013). This weakness enables hackers to access the CAN

and send unauthorized commands, potentially manipulating vehicle
behavior and compromising safety and operation.

Given the vulnerabilities in the CAN, implementing an Intrusion De-
ection System (IDS) is essential for security. Although anomaly-based
nd signature-based IDS have limitations in recognizing anomalies and
nown threats, a machine learning (ML)-based IDS is more effective.

It efficiently detects malicious CAN messages and helps identify new
types of attacks. However, it is crucial to note that ML-based IDS can
still be susceptible to adversarial attacks.

Adversarial attacks (Wang, 2018; Martins et al., 2020), particularly
vasion attacks that alter test data to deceive ML models, pose a major

threat to ML systems, including our ML-based CAN IDS. These attacks
can trick the IDS, leading to compromised ECUs and vulnerabilities in
he CAN network. To counter this threat, implementing strong defenses
s crucial to protect against such attacks and preserve the integrity of
he CAN network.

To counter adversarial attacks, Adversarial Training (AT) (Miyato
t al., 2015) and Ensemble Learning (EL) are commonly used. AT

retrains models with adversarial data to improve resistance to known
attacks, while EL (Strauss et al., 2017) uses multiple models to enhance
ecision-making through diverse data interpretations. However, these
ethods might not fully protect against new, unknown attacks, making

he development of further defenses essential to effectively address
merging threats.

Another defensive approach is Distance-based Optimization (DO),
iming to keep feature vectors sufficiently distant from each class

to ensure accurate classification despite noise. Determining the opti-
al distance and direction is challenging, often relying on heuristics,

which may not yield the best solution. To overcome this, Simulated
Annealing (SA) (Bertsimas and Tsitsiklis, 1993), a heuristic and global
optimization algorithm, is employed to identify optimal parameters. By
integrating adversarial training, ensemble learning, and distance-based
optimization, the CAN IDS system can effectively counter both known
and unknown adversarial threats, maintaining robust network security.

Adversarial defense research typically centers on network IDS (Anthi
t al., 2021; Demontis et al., 2019; Lin et al., 2022) and image recogni-

tion (Chien and Chen, 2024; Mao et al., 2019; Li et al., 2019; Deng and
u, 2024; Mustafa et al., 2020; Seo et al., 2023). Our focus, however,
2
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is on EV emulation, which faces significant challenges from adversarial
attacks. Common defenses like adversarial training (Miyato et al.,
2015) and ensemble learning (Strauss et al., 2017) might not thwart
nknown adversarial attacks. Recently, distance-based methods (Wen

et al., 2016) have been explored, though they are still emerging and
under-researched. Our goal is to combine these methods to form a
omprehensive defense against both known and unknown adversarial
ttacks. Our goal is to combine these methods to form a comprehensive

defense against both known and unknown adversarial attacks. This
paper addresses two main concerns. Firstly, it examines distance op-
timization, noting that while heuristic methods are useful, they may
not always provide the best solution. The objective is to determine
the optimal distance and direction for movement. Secondly, the paper
aims to identify the most effective ML-based model for CAN IDS. With
three defensive approaches available, it seeks to assess and determine
the best single or combined strategy. The goal is to comprehensively
evaluate all defense combinations to identify the optimal ML-based
CAN IDS solution.

Several factors impede the direct adaptation of state-of-the-art
(SOTA) image defenses to the CAN bus domain. First, in contrast to the
unstructured nature of image data, where individual pixels may lack
standalone significance, CAN data is structured, with each element,
such as timestamp, identifier (ID), and data fields, holding specific
meanings. Second, though CAN messages and images share a data
range of 0 to 255, their data types differ significantly; CAN fields are
typically integers, while image data often uses floating-point values.
Furthermore, CAN IDs can include up to 29 bits, and timestamps are
represented with floating-point values, unlike image data that does
not mix floating points and integers within the same dataset. These
fundamental differences suggest that directly applying image-based
defense strategies to the CAN bus may not be effective.

There are two main contributions:

• A paper has implemented distance-based optimization in image
recognition (Seo et al., 2023), but this approach has not been
applied in an EV environment. We not only adapt it to the EV
setting but also develop our own distance-based optimization
algorithm.

• Many researchers employ adversarial defense techniques like ad-
versarial training and ensemble learning on CAN, but these meth-
ods primarily protect against known adversarial attacks. We ex-
tend beyond these strategies by incorporating distance-based op-
timization to defend against unknown adversarial threats. Addi-
tionally, we validate our approach through EV emulation testing.

This paper is organized as follows: Section 2 reviews background
and related work; Section 3 outlines notations and problem statements;
Section 4 discusses solution approaches; Section 5 details our solu-
tion implementation on EV𝜋; Section 6 evaluates experimental results;
Section 7 concludes and suggests future directions.

2. Background and related works

2.1. Control Area Network (CAN) & CAN threat

A standard CAN data frame has several key components: the Start
of Frame (SOF) signals the start of transmission; the Arbitration field
includes the Identifier (ID) and Remote Transmission Request (RTR)
for message prioritization and type distinction; the control section
eatures the Identifier Extension (IDE), a reserved bit (r0), and the
ata Length Code (DLC) that specifies payload size. The Data field

carries actual information. Limited to an 8-byte payload, CAN frames
lack encryption and authentication, exposing them to security risks like
network disruption or unauthorized system access, necessitating robust

isk mitigation measures.
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Attackers compromise vehicles via physical OBD-II ports or remote
ccess, connecting through OBD-II or the in-car entertainment system.

The unencrypted and unauthenticated CAN network allows direct in-
jection of malicious data, posing threats like unauthorized information
access, vehicle control loss, and passenger danger. Tactics include
DDoS or spoofing attacks, potentially disabling brakes, controlling
acceleration, or altering CAN bus messages.

2.2. Adversarial attack

Adversarial attacks originated in the image domain (Goodfellow
et al., 2014) and expanded to networks, but are less common in the

AN bus domain. We treat CAN data frames as features, inducing per-
urbations by altering data points, causing potential misclassifications
y machine learning algorithms through noise addition.

Adversarial attacks vary in type and method, including gradient-
based attacks like Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2014), Projected Gradient Descent (PGD) (Madry et al., 2017),
Momentum Iterative Method (MIM) (Dong et al., 2018), and Jaco-
bian Saliency Map (JSAM) (Papernot et al., 2016), which modify in-
puts using model gradients. Optimization-based attacks, such as Deep-
Fool (Moosavi-Dezfooli et al., 2016) and ZOO (Chen et al., 2017),
minimally alter data to cause misclassifications.

Attacks differ in iteration needs: single-step attacks like FGSM re-
uire one iteration, while multi-step attacks like PGD and JSMA use
everal, increasing computational demands. Moreover, attack portabil-
ty enables adversarial examples from one model to compromise others,
nhancing attack feasibility without direct model access.

2.3. Adversarial defense

The necessity for adversarial defense stems from the susceptibility
of machine learning models to adversarial attacks, threatening their
performance and reliability. In our ML-based CAN IDS, robust defense
against these attacks is crucial for maintaining safety and security.

• Adversarial Training: Adversarial training (Miyato et al., 2015)
uses adversarial examples generated by attacks for training, en-
hancing model robustness by providing a different data perspec-
tive.

• Ensemble Learning: Ensemble learning (Strauss et al., 2017)
combines multiple models to utilize their diverse perspectives,
evaluating their collective performance with metrics like the
kappa statistic for model agreement. This method mitigates ‘‘dou-
ble error’’ risks — when all models err identically — by leveraging
the combined insights and diversity of the models for a thorough
evaluation of test data.

• Distance-based Optimization: Distance-based optimization en-
hances model robustness by minimizing intra-class distance and
maximizing inter-class distance through two phases: the shrink
phase and the push-back (PB) phase. The shrink phase (Seo et al.,
2023) reduces intra-class distance by aligning class feature vec-
tors towards their centers, while the PB phase increases inter-class
distance by separating classes further. However, the heuristic
methods for distance calculation might not be optimal. Optimal
intra-class compactness and inter-class separability are crucial for
robust adversarial defense, underscoring the need for advanced
optimization techniques.

2.4. Simulated annealing

Heuristic-based distance optimization hinders finding the optimal
efense distance. To overcome this, we apply Simulated Annealing
SA) (Bertsimas and Tsitsiklis, 1993), a heuristic and probabilistic

optimization algorithm inspired by metallurgical annealing. SA solves
3
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global optimization problems by decreasing temperature until conver-
gence, escaping local optima using temperature-dependent probability
o reach global solutions.

In this study, we did not select alternative optimization techniques
because classical optimization methods would likely yield similar im-
rovements. The objective was to compare heuristic or non-optimized
istance-based methods with Distance-based Optimization (DO), rather
han to evaluate different optimization algorithms. For this purpose, we
hose simulated annealing, a widely used and representative algorithm.

2.5. Related work

Table 1 highlights previous research on adversarial attacks and
defenses. In adversarial defense, numerous papers focus on adversarial
training (Demontis et al., 2019; Lin et al., 2022; Chien and Chen, 2024;
Mao et al., 2019; Li et al., 2019; Deng and Mu, 2024; Mustafa et al.,
2020; Wang et al., 2023). Some studies employ ensemble learning (Lin
et al., 2022; Wang et al., 2023). In the realm of distance-based methods,
some shrink techniques are used (Mustafa et al., 2020; Seo et al., 2023).

owever, our approach differs in that it implements shrink techniques
ith optimization methods to find the best distance to move. In adver-

sarial attack, there are common adversarial attack techniques such as
FGSM, JSMA, PGD, and ZOO are also discussed.

In Demontis et al. (2019), Lin et al. (2022), researchers utilize
simple models such as decision trees (DT), random forests (RF), sup-
ort vector machines (SVM), and deep neural networks (DNN) in the
etwork domain. Additionally, studies like (Chien and Chen, 2024; Mao
t al., 2019; Li et al., 2019; Deng and Mu, 2024; Mustafa et al., 2020;

Seo et al., 2023) incorporate Adversarial Contrastive Learning (ACL),
obust Contrastive Learning (RoCL), Adversarial Contrastive Learning

ramework (ADVCL), Convolutional Neural Networks (CNN) and DNN
odels, primarily focusing on image recognition tasks. In Wang et al.

(2023), various machine learning models, including DT and SVM,
are employed in EV simulations. Transferability analysis is performed
xclusively in Lin et al. (2022), Wang et al. (2023).

‘‘‘
Our research uses neural network (NN) models for defense, focusing

n distance-based optimization tailored for NN models. We evaluate
all adversarial defense techniques in the corresponding work table to
determine the most effective approach. Notably, our research focuses
on EVs, and we conduct emulation experiments. This choice allows us
to more accurately simulate real-world conditions, providing valuable
insights into the effectiveness of our defense strategies in the EV
domain. In Wang et al. (2023), the work is the most similar to ours,
but there are key differences. While we discuss adversarial attack and
defense in EV emulation, Wang et al. (2023) focuses on EV simulation.
The difference in environment is significant, as our approach is closer
to real-world conditions. Additionally, our defense approaches differ;
although both studies use adversarial training and ensemble methods,
our work uniquely incorporates distance-based optimization.

3. Problem statements

This section covers our discussion of the problem statement in two
ubsections: the notation table and the problem description. We start

by explaining the notations. Next, we describe the main problem of the
ork.

3.1. Notations

The notation table is divided into three categories: Dataset, Machine
earning, and Distance-based. The Dataset category includes the clean
nd adversarial datasets, with the expanded dataset being a mix of
oth. The Machine Learning category encompasses various models with
ifferent adversarial defense methods, such as adversarial training and
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Table 1
Survey on Adversarial Defense.

Paper Adversarial
training

Ensemble
learning

Distanced Attack techniques Models Transferability
analysis

Environment

shrink PB

Demontis et al. (2019) V – – – JSMA Random Forest, J48 – Network

Lin et al. (2022) V V – – Decision Tree Attack,
JSMA, ZOO Attack,
C&W, PGD, FGSM

Decision Tree, LR,
XGBoost, SVM, DNN

V Network

Chien and Chen (2024) V – – – PGD ACL, RoCL, ADVCL – Image
recognition

Mao et al. (2019) V – – – FGSM and C&W, LL DNN – Image
recognition

Li et al. (2019) V – – – FGSM, BIM, PGD,
C&W, MIM

DNN – Image
recognition

Deng and Mu (2024) V V – – AutoAttack, PGD,
C&W, SignHunter

DNN – Image
recognition

Mustafa et al. (2020) V – V – FGSM, BIM, MIM,
PGD, C&W

CNN – Image
recognition

Seo et al. (2023) – – V – FGSM, BIM, MIM, PGD CNN – Image
recognition

Wang et al. (2023) V V – – ZOO Attack, JSMA,
PGD, FGSM, C&W,
BIM, DTA

Decision Tree, SVM,
LSTM, XGB, DNN,
CNN, LR, KNN

V EV
Simulation

Ours V V V V JSMA, Deepfool,
MIM, FGSM, PGD,
ZOO Attack

DNN, CNN, LSTM V EV
Emulation
distance-based optimization, as well as ensemble models. The Distance-
based category includes the distance algorithm, feature vectors, center
vector, and movement distance. Table 2 lists all the notations in these
categories.

‘‘‘
Dataset: A prepared dataset 𝐷 will be used to train the ML-based

CAN IDS. This dataset contains the input data 𝑥𝑖 and its corresponding
label 𝑦𝑖. The dataset is divided into the training dataset 𝐷𝑇 𝑟𝑎𝑖𝑛 and
the testing dataset 𝐷𝑇 𝑒𝑠𝑡. Additionally, adversarial attacks can attack
the dataset, resulting in the adversarial dataset 𝐷+ contains input data
𝑥+𝑖 and its corresponding label 𝑦𝑖. The adversarial dataset includes a
well-known adversarial dataset 𝐷𝑘𝑛+ for adversarial training and an
unknown adversarial dataset 𝐷𝑢𝑛+ for testing the model’s robustness.
During adversarial training, we need an expanded dataset 𝐷𝐸 𝑥, which
combines the original dataset 𝐷 and the well-known adversarial dataset
𝐷𝑘𝑛+. This expanded dataset is split into the expanded training dataset
𝐷𝐸 𝑥𝑇 𝑟𝑎𝑖𝑛 and the expanded testing dataset 𝐷𝐸 𝑥𝑇 𝑟𝑎𝑖𝑛

Machine Learning: The best model 𝑀∗ is trained on dataset 𝐷 and
evaluated using the F1 score. The best adversarial training model 𝑀+∗

follows the same evaluation but is trained with the expanded dataset
𝐷𝐸 𝑥𝑇 𝑟𝑎𝑖𝑛. The best distance-based optimization model 𝑀𝐷∗ uses the
same dataset and evaluation as 𝑀∗, but incorporates distance-based
optimization. The best distance-based optimization with adversarial
training model 𝑀+𝐷∗ is trained with 𝐷𝐸 𝑥𝑇 𝑟𝑎𝑖𝑛 and uses distance-based
optimization. Finally, the best ensemble models — 𝐸∗, 𝐸+∗, 𝐸𝐷∗, and
𝐸+𝐷∗ — are formed by enhancing these previous models with ensemble
learning.

Distance-based: Distance-based optimization consists of a shrink
phase and a push-back phase, each with its respective algorithms:
the shrink algorithm 𝑆(𝑥) and the push-back algorithm 𝑃 𝐵(𝑥). The
distance difference function calculates the total distance moved from
the original feature vector 𝑣𝑗𝑖 to the expected feature vector 𝑣𝑗

′

𝑖 . In
the shrink phase, we use the center vector 𝐶 and feature vector 𝑣𝑗𝑖
determines the direction ⃖⃖⃖⃖⃗𝑠𝑗

′

𝑖 and distance 𝑑𝑠 for moving the feature
vector. Similarly, in the push-back phase, center vector 𝐶 and feature
vector 𝑣𝑗𝑖 are also used to calculate the direction ⃖⃖⃖⃖⃗𝑐𝑗′ and distance 𝑑𝑃 𝐵 .
Simulated annealing (SA) is then employed to select the best distance
𝑑 to move.
4

best
Fig. 1. Problem Overview. The figure depicts the process of evaluating single ML
models and ensemble methods using both original and adversarial datasets. It highlights
the integration of distance-based optimization and ensemble strategies to identify the
optimal IDS approach 𝐴∗.

3.2. Problem statements

3.2.1. Problem overview
Fig. 1 illustrates our research framework. We use clean and adver-

sarial datasets for adversarial training of individual models. Connec-
tions are made with these models to explore three adversarial defense
approaches and identify the optimal strategy. Two main problems arise:
distance optimization, which involves finding the best direction and
distance to separate feature vectors, and achieving an optimal Intrusion
Detection System (IDS) by determining the most effective machine
learning integration approaches.

3.2.2. Problem 1 - Optimization for distance
Distance-based optimization consists of Shrink and PB, aiming to

find the optimal distance and PB direction for movement to maximize
the total distance.

Given the shrink function 𝑆(𝑥), PB function 𝑃 𝐵(𝑥), model 𝑀 , and
feature vectors of each model 𝑉 as input, our goal is to decide the
distance 𝑑 , 𝑑 , and direction ⃖⃗c as output. This is equivalent to
𝑠 𝑃 𝐵
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Table 2
Notations.

Dataset

Dataset D D = {(xi, yi), i = 1, . . . , n}; D = DTest ∪ DTrain ; 𝑇 𝑒𝑠𝑡 ∪ 𝑇 𝑟𝑎𝑖𝑛 = {1,… , 𝑛}
Training Dataset DTrain DTrain = {(xi, yi), 𝑖 ∈ 𝑇 𝑒𝑠𝑡}
Testing Dataset DTest DTest = {(xi, yi), 𝑖 ∈ 𝑇 𝑟𝑎𝑖𝑛}
Adversarial Attack Data x+i x+i ∈ Rn

Well-known Adversarial Attack Dataset Dkn+ Dkn+ = {(x+
i, yi), 𝑖 = 1, . . . , 𝑛}

Unknown Adversarial Attack Dataset Dun+ Dun+ = {(x+
i, yi), 𝑖 = 1, . . . , 𝑛}

Adversarial Attack Dataset D+ D+ = Dkn+ ∪ Dun+

Well-known Adversarial Dataset for Testing DknTest+ DknTest+ = {(x+
i, yi), 𝑖 ∈ 𝑇 𝑒𝑠𝑡 } DknTest+ ∈ Dkn+

Unknown Adversarial Dataset for Testing DunTest+ DunTest+ = {(x+
i, yi) 𝑖 ∈ 𝑇 𝑒𝑠𝑡 }, DunTest+ ∈ Dun+

Expanded Dataset with Adversarial Samples DEx DEx = D ∪ Dkn+

Expanded Dataset for Training DExTrain DExTrain = {(xi, yi)∪ (x+
i, yi), 𝑖 ∈ 𝑇 𝑟𝑎𝑖𝑛}

Expanded Dataset for Testing DExTest DExTest = {(xi, yi) ∪ (x+
i, yi), 𝑖 ∈ 𝑇 𝑒𝑠𝑡}

Machine Learning

All Single Models M M = Mj ∪ M+
j

ML Model Mj Model training with Training Dataset DTrain

ML Model with Adversarial Training M+
j Model training with Expanded Training Dataset DExTrain

Distanced-based ML Model MD
j Model doing Distanced-based optimization

Best Single ML Model M* Best F1 score Model
Best ML Model with Adversarial Training M+* Best F1 score Adversarial Trained Model
Best ML Model with Distance-based Optimization MD* Best F1 score Distance-based Optimization Model
Ensemble Team Ek Ek is consist of k Mj, 𝑘 = 2𝑖 + 1, 𝑖 ∈ Z+

Best Ensemble Team E* Best F1 score Ensemble Team
Best Adversarial Training Ensemble Team E+* Best F1 score Adversarial Trained Ensemble Team
Best Distance-based Optimization Ensemble Team ED* Best F1 score Distance-based Optimization Ensemble Team
Best Distance-based Optimization with Adversarial Training Ensemble Team E+D* Best F1 score Distance-based Optimization with Adversarial Trained Ensemble Team
Best Approach A* The smallest F1 scores degradation with testing dataset DknTest+ and DunTest+

Distance-based Optimization

Shrink algorithm S(x) 𝑥 ∈ 𝑀

PB algorithm PB(x) 𝑥 ∈ 𝑀

Distance Difference function Dis(x) 𝑥 ∈ { ds, dPB }
Each feature vector vji Feature vector with j class i elements.
Expected each feature vector vj’i Expected movement feature vector with j class i elements.
Feature vector V Feature vector of ML model, V = {(v11, v12, . . . ), (v21, v22, . . . ), . . . }
Movement direction in simulated annealing ⃖⃗𝑐 Shrink and PB phase direction of vector of ML model.

Shrink phase movement direction in j class and i element ⃖⃖⃖⃗𝑠𝑗
′

𝑖 Shrink direction of vector of ML model in j class and i element.
Central vector C Central vector of ML model.
Central vector of j class cj Central vector of ML model in j class.

PB phase movement direction of j class ⃖⃖⃖⃗𝑐𝑗′ PB direction of j class vector of ML model.
Distance of feature vector d Summation of every class feature to other class central vectors.
Shrink distance of feature vector ds The distance we move in shrink phase calculated by SA.
PB distance of feature vector dPB The distance we move in PB phase calculated by SA.
New distance to move di The new distance in each iteration in SA.
Best distance to move dBest The best movement distance that is calculated by SA.
Threshold distance 𝛿D The average distance between each class
b
b

b

i

maximizing the distance

𝑑 = 1
𝑛

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

𝑚
∑

𝑘=1

√

(𝑣𝑗𝑖 − 𝑐𝑘)2, 𝑖 ≠ 𝑘, (1)

subject to the constraint that 𝑑𝑃 𝐵 is less than or equal to constraint
distance, denoted as 𝛥𝐷, which k is the center class number, 𝑗 is the
elements in each class, 𝑖 is each class number. The objective function
uses Euclidean distance to calculate the average distance from each
class center to other class points, with constraints set to prevent infinite
distance.

3.2.3. Problem 2 - Optimal ML-based model for CAN IDS
In this problem, we are presented with several defense approaches

ombined by distance-based optimization, adversarial training, and en-
emble learning: the best ML model, denoted as 𝑀∗, the best
5

adversarial training ML model, denoted as 𝑀+∗, the best Distance-
ased optimization ML model, denoted as 𝑀𝐷∗, and the best Distance-
ased optimization with adversarial training ML model, denoted as

𝑀+𝐷∗. Also, we have the best ensemble team, denoted as 𝐸∗, the
est adversarial training ensemble team, denoted as 𝐸+∗, the best

distance-based optimization ensemble team, denoted as 𝐸𝐷∗, and the
distance-based optimization with adversarial training ensemble team,
denoted as 𝐸+𝐷∗.

Our objective is to identify the optimal approach to serve as the IDS.
Given the best models with adversarial defense combination methods
listed above and additional datasets including the Expanded Test-
ng Dataset 𝐷𝐸 𝑥𝑇 𝑒𝑠𝑡+, and the Unknown Adversarial Attacked Testing

Dataset 𝐷𝑢𝑛𝑇 𝑒𝑠𝑡+ as input. Our task is to determine the best defense ap-
proach, denoted as 𝐴∗. This approach should minimize the degradation

𝑘𝑛𝑇 𝑒𝑠𝑡+ 𝑢𝑛𝑇 𝑒𝑠𝑡+
of the F1 score when testing with 𝐷 and 𝐷 .
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Fig. 2. Solution Overview. This figure outlines the proposed solutions to address the
identified problems, including distance optimization using Simulated Annealing (SA)
and evaluating defense combinations. The effectiveness of the approaches is measured
by calculating the F1 score for both well-known and unknown attacks.

4. Solution approaches

4.1. Solution overview

In Fig. 2, we propose two solutions: (1) using SA to optimize
distance and direction for feature vector movement, and (2) explor-
ing an optimal ML-based CAN IDS solution using adversarial train-
ing, ensemble learning, and distance-based optimization. By combining
these methods and evaluating their performance with adversarial test
datasets, we aim to identify the best ML-based IDS solution for CAN.

4.2. Solution 1 - SA for optimizing distance

Fig. 3 shows the SA approach for distance optimization, combining
Shrink (minimizing intra-distance) and PB (maximizing inter-distance)
phases. SA generates new solutions with random variations, escap-
ing local optima by accepting new solutions based on a probability
criterion.

In the shrink phase, SA randomly generates 𝑑𝑖 based on an interval
number. We calculate the direction ⃖⃗c to move, the difference 𝐷 𝑖𝑠(𝑑𝑖) of
features with a moving distance 𝑑𝑖 in the direction ⃖⃗c and the same class
center features 𝑐𝑗 , and the difference 𝛥𝐷 between 𝐷 𝑖𝑠(𝑑𝑖) and the best
solution distance 𝐷 𝑖𝑠(𝑑𝐵 𝑒𝑠𝑡), where 𝐷 𝑖𝑠(𝑥) is the objective function of
problem 1. If 𝐷 𝑖𝑠(𝑑𝑖) is less than the current best difference distance
𝐷 𝑖𝑠(𝑑𝐵 𝑒𝑠𝑡), we accept 𝐷 𝑖𝑠(𝑑𝑖) as the current best solution, or with a
probability of 1

𝑒
𝛥𝐷
𝑡

.

In the PB phase, we calculate the direction ⃖⃗c to move, the difference
𝐷 𝑖𝑠(𝑑𝑖) of each class’s features 𝑣𝑖 with a moving distance 𝑑𝑖 in the
direction ⃖⃗c and other class center features 𝑐𝑗 where 𝑖 ≠ 𝑗, and the
difference 𝛥𝐷 between 𝐷 𝑖𝑠(𝑑𝑖) and the best solution distance 𝐷 𝑖𝑠(𝑑𝐵 𝑒𝑠𝑡).
If 𝐷 𝑖𝑠(𝑑𝑖) is greater than the current best distance 𝐷 𝑖𝑠(𝑑𝐵 𝑒𝑠𝑡) and 𝑑𝑖 is
less than the constraint 𝑑𝑡ℎ𝑟𝑒𝑠, we accept 𝐷 𝑖𝑠(𝑑𝑖) as the current best
solution, or with a probability of 1

𝑒
𝛥𝐷
𝑡

.

Simulated temperature 𝑡 and cooling parameter 𝛼 are used to deter-
mine the temperature of each iteration. Worse solutions are more likely
to be accepted at higher temperatures in probability 1

𝑒
𝛥𝐷
𝑡

. Conversely,

at lower temperatures, only reasonable solutions are accepted. The
iteration terminates when the temperature t reaches the termination
temperature 𝑡𝑚𝑖𝑛.

4.3. Solution 2 - Optimal ML-based CAN IDS model

4.3.1. General framework
Figs. 4 shows that our solution framework integrates three defense

methodologies, resulting in eight approaches: without any adversarial
defense, individual defenses (DO, AT, EL), combinations of two de-
fenses (DO+AT, AT+EL, DO+EL), and all three combined (DO+AT+EL).
6

Fig. 3. Simulated Annealing (SA).

Fig. 4. Combination order.

Fig. 5. General framework of our solution.

This comprehensive approach thoroughly evaluates the resilience and
effectiveness of various defense strategies against adversarial attacks.

The three combinations of defenses require sequential execution to
maintain correct logic. In Fig. 4, solid lines indicate the inclusion of
each defense method in the sequence, while dotted lines indicate its
exclusion.

In Fig. 5 we present three solutions and their combinations, gener-
ating eight models. The inputs include the eight models, a known test
data set, and an unknown test data set. By collecting and evaluating all
F1 scores, we aim to identify the best F1 score for our IDS.

4.3.2. Adversarial training
In Figs. 15, the input includes three classifiers, an augmented train-

ing dataset, and a known adversarial test dataset. Each model is trained
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Table 3
Open source and Tools.

Category Name Functionality

Library

Sckit-learn library of Machine learning

Pytorch library of Deep learning

cantools Encoding and decoding CAN
messages and signals,
as well as for generating CAN
message and signal database.

python-can Interfacing with CAN to send and
receive messages.

Adversarial Attack Adversarial Robustness Toolbox The tool use to attack the model

Simulation EV𝜋 Emulate the CAN bus architecture
e

r

8
a

d
a
p
d
i

c
c

on the augmented dataset and evaluated on the adversarial test dataset
to obtain F1 scores, which are added to a list. The highest F1 score from
the list identifies the best adversarial training model.

4.3.3. Ensemble learning
In Figs. 16, the input includes a list of combination model teams,

 training dataset, and a testing dataset. For each team, diversity is
valuated by double fault (< 50%) and kappa statistics (40%–80%). The
ouble fault measures the probability that models make the exact incor-
ect predictions, while kappa statistics assess the consistency between
wo models. We aim to avoid continuous faults and ensure models have
iverse perspectives on the data. Models meeting these thresholds are
dded to the ensemble teams list. The most frequent ensemble team is
dentified as the output.

4.3.4. Distance-based optimization
In Figs. 17, the input includes the machine learning model and

 known adversarial test dataset. For each model, the distance-based
ptimization from solution 1 is run, involving finding the optimal
istance for shrink and push-back phases. After optimization, the model

is tested to determine the best F1 score. The model with the highest F1
score is considered the best Distance-Based Optimization model.

5. Implementation

5.1. Open sources tools and dataset

We used open source tools in our implementation (see Table 3).
Model Library: Scikit-learn for dataset partitioning and evaluation

metrics (F1 score, data split), and PyTorch for constructing and training
neural networks. These tools supported testing, data preprocessing, and
deep learning in our experimental pipeline.

CAN: Cantools for encoding and decoding CAN messages and sig-
als, and python-can for interfacing with the CAN bus and sending mes-
ages to EVs. These tools were essential for CAN-based communication
n electric vehicles.
Adversarial Attack: The Adversarial Robustness Toolbox (ART)

Nicolae et al., 2018) provides adversarial attack techniques (FGSM,
PGD, BIM, etc.) that use model gradient information to generate per-
turbations maximizing the model’s loss function. ART helps evalu-
ate model vulnerability to adversarial examples and develop robust
defenses.

Emulation: EV𝜋 (Anon) emulates the CAN bus architecture, allow-
ng model testing in a simulated physical environment for thorough
alidation and evaluation in real-world scenarios. The complete system
s presented in Section 5.3.
7

5.2. Implementation details

CAN dataset: We generate our dataset independently using the
mulated environment provided by EV𝜋. Each data point conforms to

the CAN bus data frame structure, with key features extracted: time
interval between CAN messages, ID field, and Data field. Each dataset
ow contains ten features: time, ID, and eight data fields.

CAN data is captured using candump, converted to CSV, and pre-
processed by splitting messages, replacing NaN and empty entries with
zero, and labeling instances as benign or malicious. The dataset is split
0/20 for training and testing, respectively, followed by model training
nd hyperparameter tuning.
ART: ART (Adversarial Robustness Toolbox) uses a dataset and

a machine learning model to execute attacks. It employs adversarial
ataset generation techniques to manipulate input data and create
dversarial examples. After the attack, ART generates an adversarial
erturbed dataset containing altered instances to fool the model. This
ataset is crucial for evaluating the model’s robustness and vulnerabil-
ty to adversarial attacks.
Distance: the distance-based defense approach consists of two

phases: the shrink phase and PB phase. The shrink phase is used to
minimize intra-class distance. For this objective, we need a distance
and direction. The movement distance 𝑑 is determined by SA solved in
the previous chapter, and the shrink phase movement direction is
⃖⃖⃖⃖⃗𝑠𝑗

′

𝑖 = (𝑣𝑗𝑖 − 𝑐𝑗 ). (2)

Thus, the expected shrink feature vector is
𝑣𝑗

′

𝑖 = 𝑣𝑗𝑖 + 𝑑 × ⃖⃖⃖⃖⃗𝑠𝑗
′

𝑖 . (3)

The shrink phase includes a formulation to compute the distance, where

𝜏𝑠ℎ𝑟𝑖𝑛𝑘 = 1
𝑚𝑛

𝑚
∑

𝑗=1

𝑛
∑

𝑖=1

‖𝑣𝑗
′

𝑖 − 𝑣𝑗𝑖 ‖
𝑚𝑛

(4)

is computed as the mean squared error between feature vectors 𝑣𝑗𝑖
and their corresponding expected feature vectors 𝑣𝑗

′

𝑖 , which 𝑗 is class
number and 𝑖 is the element in 𝑗 class. On the other hand, the PB phase
is used to maximize the distance between classes. To achieve this, we
need a formulation to compute the distance and the direction of the
center class. The distance 𝑑 is determined by the SA, and the direction
of the center class is
⃖⃖⃖⃖⃗𝑐𝑗

′
=

∑

𝑗≠𝑖 ∣ 𝑐
𝑗 − 𝑐𝑖 ∣

𝐾 − 1 , (5)

determined by the difference between each class center 𝑐𝑗 and the other
lass center point 𝑐𝑖, which 𝑗 and 𝑖 are the class number, and 𝐾 is total
lass number. So the expected PB feature is
𝑣𝑗

′

𝑖 = 𝑣𝑗𝑖 + 𝑑 × ⃖⃖⃖⃖⃗𝑐𝑗
′
, (6)
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Table 4
LSTM Architecture.

Layer No. Type Input size Output size Additional details

1 LSTM (batch, 1) (batch, 50) Hidden Size: 50, Layers: 1, Dropout: 0.2
2 LSTM (batch, 50) (batch, 50) Hidden Size: 50, Layers: 1, Dropout: 0.2
3 LSTM (batch, 50) (batch, 50) Hidden Size: 50, Layers: 1, Dropout: 0.2
4 LSTM (batch, 50) (batch, 50) Hidden Size: 50, Layers: 1, Dropout: 0.2
5 Fully-Connected (batch, 50) (batch, 2) Linear Layer (50 → 2)
6 Sigmoid (batch, 2) (batch, 2) Activation
Table 5
DNN Architecture.

Layer No. Type Input size Output size Additional details

1 Fully-Connected (batch, 10) (batch, 10) Linear Layer (10 → 10)
2 BatchNorm (batch, 10) (batch, 10) BatchNorm1d
3 ReLU (batch, 10) (batch, 10) Activation
4 Dropout (0.1) (batch, 10) (batch, 10) Dropout Layer
5 Fully-Connected (batch, 10) (batch, 8) Linear Layer (10 → 8)
6 BatchNorm (batch, 8) (batch, 8) BatchNorm1d
7 ReLU (batch, 8) (batch, 8) Activation
8 Dropout (0.1) (batch, 8) (batch, 8) Dropout Layer
9 Fully-Connected (batch, 8) (batch, 4) Linear Layer (8 → 4)
10 BatchNorm (batch, 4) (batch, 4) BatchNorm1d
11 ReLU (batch, 4) (batch, 4) Activation
12 Dropout (0.1) (batch, 4) (batch, 4) Dropout Layer
13 Fully-Connected (batch, 4) (batch, 2) Linear Layer (4 → 2)
14 Sigmoid (batch, 2) (batch, 2) Activation

Table 6
CNN Architecture.

Layer No. Type Input size Kernels

1 Convolutional (batch, 10, L) 5 × 10 × 100
2 ReLU (batch, 100, L) –
3 Dropout (0.2) (batch, 100, L) –
4 Convolutional (batch, 100, L) 5 × 100 × 200
5 ReLU (batch, 200, L) –
6 Dropout (0.2) (batch, 200, L) –
7 Convolutional (batch, 200, L) 10 × 200 × 400
8 ReLU (batch, 400, L) –
9 Max Pool (batch, 400, L/2) 2
10 Dropout (0.2) (batch, 400, L/2) –
11 Fully-Connected (batch, 400) 400 × 2
12 Sigmoid (batch, 2) –

and

𝜏𝑃 𝐵 = 1
𝑚𝑛

𝑚
∑

𝑗=1

𝑛
∑

𝑖=1

‖𝑣𝑗
′

𝑖 − 𝑣𝑗𝑖 ‖
𝑚𝑛

(7)

calculates the mean squared error between the expected feature vector
𝑣𝑗

′

𝑖 and the actual class center 𝑣𝑗𝑖 , serving as the loss function for model
updates.

EL: We form ensemble teams using bagging, selecting models for
each team, and using hard voting to combine predictions. The best
ensemble team is chosen based on majority decision.

AT: To prepare an extended dataset for adversarial training, we
combine the clean dataset with the adversarial attacked dataset, con-
taining both benign and malicious instances. We perform an 80/20
train-test split to ensure models are trained on diverse data, including
adversarially perturbed samples.

Evaluation: We compare the performance of each approach using
F1 scores. The approach with the highest F1 score against adversar-
ial attacks is considered the best performing method, indicating its
robustness in accurately classifying benign and malicious instances.

NN Architecture: We employ three models that are LSTM, DNN,
and CNN for implementing our ML-based IDS. The architectures of
these models are listed separately in Tables 4, 5, and 6. The model
with the highest F1 score is regarded as the most effective ML-based
IDS model.
8

Fig. 6. EV𝜋 environment.

5.3. Testbed EV𝜋

Fig. 6 depicts EV𝜋 (Anon) as a hardware emulation setup with
LiDAR, ZED 2i camera, Inertial Measurement Unit (IMU), Battery Man-
agement System (BMS), and controls for steering, braking, rear lights,
and LEDs. It mimics a car’s functionality but is built on a two-wheeled
bicycle structure. The system includes a CAN bus network where CAN
0 handles engine-related messages (steering, braking, rear signals)
and CAN 1 manages LEDs. Additionally, LiDAR data is sent through
Ethernet, while ZED 2i camera and IMU data use USB connections.

We connect our laptop to EV𝜋 using an OBD-II cable and the python-
can library to send CAN messages. These messages are sent to the PC
and routed to the correct protocol. For instance, steering system attacks
are directed to CAN 0, where the steering motor responds accordingly.
Attacks on CAN 0 do not trigger LED signals, posing a risk due to the
lack of warning indicators for malicious activity.

In Fig. 7, our attack involves sending malicious CAN messages,
directed at the driver, affecting steering, braking, and rear systems.
These messages go through the CAN manager to either the human
machine interface (HMI) or directly to the driver. Simultaneously, our
CAN IDS monitors the network for malicious activity and alerts us via
WebSocket if detected.

The interaction of the proposed CAN IDS defense strategies (AT, EL,
and DO) is primarily shaped by their roles in offline training and real-
time scenarios. Since AT and DO are utilized during the offline model
training phase, real-time concerns are not relevant at this stage. Instead,
the focus shifts to the performance of EL in real-time scenarios. To
address this, we deployed the combined model (AT, EL, and DO) to
the EV𝜋 for testing and the model is efficient and capable of accurately
predicting CAN messages in the EV𝜋 environment.

Our scenario is designed to simulate attacks originating from exter-
nal sources. DDoS attacks are common in network environments, while
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Fig. 7. Attack Path. This figure illustrates the attack path in the CAN network, where
malicious CAN messages are injected using the can send tool to compromise the system.
The CAN IDS monitors and detects these unauthorized messages to protect the driver
and HMI components from potential threats.

Table 7
Parameters configuration.

Model parameters setting

Learning Rate 0.005 (For DNNs in AT)
Learning Rate 0.001 (For other models and defense methods)
Batch size 2048
Optimizer Adam
Scheduler ReduceLROnPlateau
Loss Function CrossEntropy

spoofing presents a significant threat due to its difficulty in detection.
As such, we incorporate both types of attacks to target our vehicle.

During data collection in our scenario, we identified two main
attack types: DDoS and Spoofing, which affected the steering, braking,
and rear systems. The dataset consists of approximately 1,040,000
CAN messages, divided into 610,000 normal messages and 430,000
malicious messages. These messages are labeled as ‘‘0’’ for benign and
‘‘1’’ for malicious, facilitating the training and testing of our IDS.

6. Experiment results

This chapter is structured into several sections: experiment setting,
comparing adversarial attack techniques, evaluating defense methods
like distance-based optimization and ensemble approaches, discussing
known and unknown attack methods, and comparing the effect of
adversarial training with triplet loss. These subsections offer a thorough
analysis of adversarial threats and defense strategies.

6.1. Environment setting

Table 7 lists all the parameters used for model training. In the model
parameter settings, we specify key parameters such as learning rate,
batch size, optimizer, scheduler, and loss function.

6.2. Attack techniques on target models

In Fig. 8, models perform well on normal datasets, with ensem-
ble models enhancing F1 scores through collective decision-making.
The ensemble team, comprising DNN, CNN, and LSTM models, show-
cases the strength of combining diverse architectures for improved
performance.

Single vs. Ensemble on Adversarial Dataset

• The Strongest Adversarial Attack Technique
In Fig. 9, the ML-based CAN IDS is subjected to adversarial
attacks. The y-axis represents model B attacked by adversary
A, while the x-axis displays the selected models and ensembles.
Darker cells indicate lower F1 scores, with the overall average
dropping to 0.56. The most potent attack, ZOO, reduces the
average F1 score to 0.42 due to its optimization-based iterative
nature. In contrast, JSMA, the least effective attack, lowers the
F1 score to 0.63 using gradient-based methods, though its impact
9

Fig. 8. The result of single and ensemble.

Fig. 9. Adversarial attack result.

is constrained by the integer limitations of the CAN bus protocol.
Despite being the weakest attack, JSMA still significantly impacts
the IDS, reducing its F1 score from 0.99 to 0.62.

• Classifiers vs. Adversarial Attack Technique
Vertically analyzing the heatmap in Fig. 9 reveals all classifiers’
vulnerability to adversarial attacks, with F1 scores dropping no-
tably from 0.4 to 0.73. The highest average F1 score of 0.73 by
DNN highlights its robustness due to its simpler architecture that
provide less information to gradient-based adversarial attacks,
making it less susceptible to perturbations. In contrast, LSTM,
designed for time series analysis, records the lowest average
F1 score of 0.39, as adversarial attacks disrupt both data and
temporal aspects, challenging its defense capabilities.

• Ensemble Team vs. Adversarial Attack
The effect of ensemble team’s defense against adversarial attacks
is not well, with the F1 score decreasing to 0.48 due to poor
performance of individual members, LSTM and CNN. The ensem-
ble’s success relies on the individual models’ quality, impacting
its overall performance.

6.3. Distance-based vs. Adversarial training vs. Ensemble

6.3.1. Distance-based optimization
In Fig. 10, Distance-based Optimization enhances the F1 score

against ZOO [CNN] from 0.459 to 0.633, showing improvement. De-
spite its goal of maximizing class separation, it may struggle when ZOO
generates data between 0 to 1 units from the original features, as CAN
only receives integer values. Consequently, data is mapped to 0 or 1,
causing a loss of original characteristics. However, the average F1 score
of distance-based optimization is 0.76, showing a 20% improvement
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Fig. 10. Distance-based optimization.

Fig. 11. Adversarial Training (AT).

over the F1 score of the original adversarial attack of 0.56. Combining
distance-based optimization with ensemble learning enhances defense
by leveraging attack insights for informed decision-making, boosting
model robustness against adversarial perturbations, and it can get a
better F1 score of 0.88 than distance-based optimization.

6.3.2. Adversarial training
In Fig. 11, adversarial training significantly boosts the F1 score

against ZOO[CNN] from 0.32 to 0.84, outperforming distance-based op-
timization. This improvement is attributed to learning from adversarial
examples during training. The average F1 score of adversarial training
is 0.94, achieving a 38% improvement over the original adversarial
attack. Also, ensemble adversarial training matches individual training
in F1 scores, with an ensemble model’s 0.95, showing satisfactory
results.

6.3.3. Distance-based optimization with adversarial training
Fig. 12 displays the outcomes of combining distance-based opti-

mization with adversarial training, yielding similar results to adver-
sarial training alone. The average F1 score improves to 0.96, surpass-
ing the individual training and achieving a 40% improvement in the
original adversarial attack. Notably, the combination of DO+AT+EL
achieves the highest F1 score of 0.97. Moreover, ZOO persists as a
potent attack, consistent with prior findings, maintaining its strength.

6.4. Adversarial attack: Unknown vs. Well-known

Fig. 13 illustrates the effectiveness of various defense strategies
against known and unknown adversarial attacks, with known attacks
shown on the left and unknown on the right. For known attacks,
Adversarial Training (AT) is the top single defense strategy. Among
combined defenses, Distance-based Optimization with Ensemble Learn-
ing (DO+EL) shows a modest improvement, but the highest F1 score of
10
Fig. 12. Distance-based Optimization with AT.

Fig. 13. Comparison with all defense methods on Unknown vs. Well-known.

0.97 is achieved with DO+AT+EL. For unknown attacks, AT is not the
best single defense; Distance-based Optimization (DO) performs better.
Both two-defense combinations yield similar results, with the high-
est F1 score again achieved by combining all defenses (DO+AT+EL).
Overall, DO+AT+EL is the most effective strategy for both attack types.

6.5. Compare defense effect of adversarial training with triplet loss

Adversarial training with triplet loss (Li et al., 2019) uses adver-
sarial examples as the anchor, original examples as the positive node,
and examples from other classes as the negative node. The goal is to
maximize the distance between the anchor and the negative node while
minimizing the distance between the anchor and the positive node.

Adversarial training with triplet loss aims to achieve similar goals
to our distance-based optimization method using a triplet loss function
and adversarial examples. However, our approach yields better results.
In known adversarial attacks, the F1 score of distance-based optimiza-
tion is 12% higher than AT+Triplet, and 8% higher in unknown attacks.
Furthermore, the DO+AT method scores 32% higher in known attacks
and 11% higher in unknown attacks compared to AT+Triplet. Finally,
our DO+AT+EL method improves the F1 score by 33% in known
attacks and 14% in unknown attacks over AT+Triplet. These findings
highlight that our DO+AT+EL method is the most effective defense.

Our method outperforms adversarial training with triplet loss for
several reasons. Firstly, adversarial training with triplet loss focuses
solely on relative distances between the anchor, positive, and negative
samples, neglecting absolute distance. Additionally, it does not explic-
itly consider intra-class distance. In contrast, our method uses shrink to
compute absolute intra-class distances and PB for absolute inter-class
distances. We also employ simulated annealing to optimize distance
adjustment, contributing to our approach’s superior performance over
adversarial training with triplet loss (see Fig. 14).
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Fig. 14. AT+triplet loss vs. DO vs. DO+AT vs. DO+AT+EL.

7. Conclusions and future work

This chapter summarizes the paper’s findings and suggests future
research directions to enhance understanding and defense in the CAN
domain.

DO+AT+EL is better than AT+triplet loss: Our study shows that
our method outperforms adversarial training with triplet loss. For
known attacks, our method DO+AT+EL achieves an F1 score of 0.97,
versus 0.64 for adversarial training, a 33% improvement. For unknown
attacks, our method scores 0.61, compared to 0.47 for adversarial
training, a 14% improvement. This is because our method calculates
absolute intra-distance and inter-distance, using an optimization algo-
rithm to determine the optimal movement distance, unlike adversarial
training, which only considers relative inter-class distance. Overall, our
method excels against both known and unknown attacks.

Combining DO, AT, and EL yields the best results: Adversarial
defense methods varied in effectiveness. Adversarial training achieved
an F1 score of 0.94 against known attacks but only 0.45 against
unknown ones due to its focus on known patterns. Ensemble learning
faced bias issues, scoring just 0.17 against unknown attacks because
all models were affected, resulting in poor voting. Distance-based opti-
mization, not relying on adversarial examples, performed well, scoring
0.76 and 0.55 against known and unknown attacks, respectively. Com-
bining all three defenses yielded the best results, with F1 scores of 0.97
and 0.61, showing the benefits of multiple strategies.

ZOO is the strongest adversarial attack & CNN is the most
resilient model: The ZOO attack proved the strongest, dropping the
F1 score to 0.42. Despite this, the DNN model held a robust 0.73
F1 score, and the CNN model was the most resilient, consistently
performing well against adversarial threats. This underscores the need
to understand model vulnerabilities and resilience to develop robust
security measures.

Future work: Future research will expand the range of adversarial
attacks and test defense strategies in actual vehicles instead of emu-
lation environments like EV𝜋. This real-world testing aims to enhance
automotive cybersecurity by providing practical insights into our meth-
ods’ effectiveness. Additionally, considering actual vehicles’ limited
resources, it will be crucial to assess the feasibility of implementing our
defense architecture in such constrained environments and optimize
resource usage.
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Fig. 15. Adversarial training in our solution.

Fig. 16. Ensemble learning in our solution.

Fig. 17. Distance-based optimization in our solution.
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